Introduction The challenges of delivering cardiac arrest (CA) courses in rural and remote (R&R) locations worldwide have been further exacerbated by the COVID-19 pandemic. However, it is important to note that this problem has always existed. The implementation of social distancing measures to combat the pandemic has had a significant impact on healthcare and medical education, particularly in relation to the training of students, laypeople (LP), and healthcare professionals (HCPs) in CA care. The combination of pandemic restrictions and pre-existing difficulties faced in R&R locations and large cities has disrupted the provision of comprehensive medical education. The suspension of basic lifesupport and defibrillation(BLSD) courses during the pandemic may have negatively affected pre-hospital care for CA. However, it is essential to acknowledge that challenges in delivering these courses in R&R areas predate the pandemic. Materials and methods A 2021 epidemiological study in the Brazilian Amazon identified CA as the primary cause of death, followed by COVID-19. This highlights the importance of providing BLSD courses and training to emergency medical service (EMS) personnel in R&R locations. Even during a pandemic. Researchers from Ontario Tech Universityand Memorial UniversitySchool of Medicinedeveloped a drone with a simulation scenario to train HCPsin automated external defibrillators (AED) operation and guide LPin safe use through BLSD protocols. A literature review showed that different training methods yielded similar outcomes. Based on these findings, the evidence-development-validation-consensus (EDVC) hybrid approach was used to develop and validate an online training program using a learning management system (LMS) as a model. Results Teaching HCPs and LP in R&R locations, such as northern Canada and the Brazilian Amazon, presents challenges due to limited resources and internet access. One potential solution lies in the utilization of remote online LMS that facilitate the administration, documentation, tracking, reporting, automation, and delivery of educational courses and training programs. The literature review indicated that mixed training approaches, including face-to-face, online, and hybrid formats, produced similar outcomes in learning assessment, self-confidence, performance, skills, and knowledge acquisition. These findings support the viability of using LMS as a model to develop and validate a course where drones deliver AEDs and provide training to HCPs and LP in R&R locations. A comprehensive training program should encompass cognitive, affective, and psychomotor learning domains, addressing various skills and knowledge aspects. Conclusion This research study develops and validates LMS teaching methods to support a training program for HCPs and LP in using AEDs delivered by drones. The program combines design-based research and consensus development methods, such as design thinking and think-aloud observations. Drones are used to provide AEDs and develop simulation scenarios for training in R&R locations. The hybrid approach ensures a valid and evidence-based training program. The study presents the EDVC approach used to enhance the maxSIMdrone training program, enabling effective out-of-hospital CA care. The program incorporates participant feedback and improves knowledge and techniques in AED use. It has the potential to improve patient outcomes in resource-limited R&R locations.