This article describes the author’s design of the Mecanum wheel mobile robots (MWR), which can be used as a test platform for experimental research into the development and implementation of autonomous systems. The paper contains a literature review of the subject matter and describes the mechanical actuator subsystem and electronic and information subsystem of the mobile robot solution. The robot was navigated using a minicomputer equipped with a Jetson Nano chip. The robot’s navigation system was implemented using the ROS environment through high-level software. Software modularity is desirable in circuits intended for research and rapid prototyping. This allows for easier modification and maintenance. The microcontroller has been implemented with a DC drive control system and incremental encoder support to estimate robot position using odometry. The project utilizes the Jetson Nano for processing data from distance sensors and monitoring the robot’s performance. The mobile platform is equipped with a RGB-D camera (Microsoft Kinect 360), the robot can use this to perform 3D mapping of the environment. A LiDAR sensor is used to collect data from a two-dimensional space. Laboratory tests were carried out to test the validity of the solutions adopted in the design of the Mecanum-wheeled mobile robot’s navigation system configuration.
Read full abstract