This study aims to design a compact antenna structure suitable for implantable devices, with a broad frequency range covering various bands such as the Industrial Scientific and Medical band (868-868.6 MHz, 902-928 MHz, 5.725-5.875 GHz), the Wireless Medical Telemetry Service (WMTS) band, a subset of the unlicensed 3.5-4.5 GHz ultra-wideband (UWB) that is free of interference, and various Wi-Fi spectra (3.6 GHz, 4.9 GHz, 5 GHz, 5.9 GHz, 6 GHz). The antenna supports both low and high frequencies for efficient data transfer and is compatible with various communication technologies. The antenna features an asynchronous-meandered radiator, a parasitic patch, and an open-ended square ring-shaped ground plane. The antenna is deployed deep inside the muscle layer of a rectangular phantom below the skin and fat layer at a depth of 7 mm for numerical simulation. Furthermore, the antenna is deployed in a cylindrical phantom and bent to check the suitability for different organs. A prototype of the antenna is created, and its reflection coefficient and radiation patterns are measured in fresh pork tissue. The proposed antenna is considered a suitable candidate for implantable technology compared to other designs reported in the literature. It can be observed that the proposed antenna in this study has the smallest volume (75 mm3) and widest bandwidth (181.8% for 0.86 GHz, 9.58% for 1.43 GHz, and 285.7% for the UWB subset and Wi-Fi). It also has the highest gain (-26 dBi for ISM, -14 dBi for WMTS, and -14.2 dBi for UWB subset and Wi-Fi) compared to other antennas in the literature. In addition, the SAR values for the proposed antenna are well below the safety limits prescribed by IEEE Std C95.1-1999, with SAR values of 0.409 W/Kg for 0.8 GHz, 0.534 W/Kg for 1.43 GHz, 0.529 W/Kg for 3.5 GHz, and 0.665 W/Kg for 5.5 GHz when the applied input power is 10 mW. Overall, the proposed antenna in this study demonstrates superior performance compared to existing tri-band implantable antennas in terms of size, bandwidth, gain, and SAR values.