Choosing an appropriate prosthetic material for the superstructure of an implant-supported or tooth-implant supported fixed partial denture (FPD) is crucial for the success of the prostheses. The objective of this study was to examine the effect of prosthetic material type and tooth-to-implant support on stress distribution of FPDs using three-dimensional finite element analysis (3D FEA). Two FEA models were generated, distinguished by their support configurations: Model I representing an FPD supported by implants, and Model II depicting an FPD supported by both a tooth and an implant. Two different restorative materials, porcelain-fused-to-metal (PFM) and monolithic zirconia, were evaluated for stress distribution under axial and oblique loads of 300 N applied to the pontic. Under both axial and oblique loading conditions, the maximum von Mises stress values were observed to be higher in the implant-abutment complex of both zirconia implant-supported and tooth-implant-supported FPDs compared to PFM FPDs. In the case of axial loading, comparable stress values were found in the cortical bone for PFM (12.65 MPa) and zirconia implant-supported FPDs (12.71 MPa). The zirconia tooth-implant-supported FPD exhibited the highest stress values in the implant-abutment system.
Read full abstract