Abstract

Internal and marginal fit accuracy of an implant-supported fixed partial denture (I-FPD) along with passive fit are required for long-term clinical success. This study compared the fit accuracy of three-unit CAD/CAM-fabricated cementretained I-FPDs milled from pre-sintered cobalt-chromium (Co-Cr) and zirconia (Zr) and evaluated the effect of applying porcelain. Two implant analogs were positioned parallel at first premolar and first molar sites in an acrylic model. Their corresponding abutments were tightened with 25-Ncm torque force. Four groups were designed: two groups of I-FPD frameworks with pre-sintered Zr (ZrF) and soft millable Co-Cr alloy (SF) blocks, and two groups by applying porcelain to the Co-Cr (SP) and Zr (ZrP) frameworks (n = 4 in each group). Absolute marginal gap (AMG), marginal gap (MG), and internal discrepancies were measured. Kolmogorov-Smirnov, Levene, one-way analysis of variance (ANOVA), and Scheffe tests were used for statistical analysis using SPSS software version 22 at a significance level of .05. All measured criteria were significantly different from each other (all P values < .001). The rankings from the lowest gap to the highest gap for the main criteria were as follows: MG: SF < SP < ZrF < ZrP; AMG and internal discrepancies: SF < SP < ZrP < ZrF. Comparing molars and premolars, molars had smaller MGs, larger internal discrepancies, and smaller AMG in ZrP but larger AMG in SP. All three-unit CAD/CAM-fabricated cement-retained I-FPDs were in the clinically acceptable range of fit accuracy. The lowest and highest misfit values were observed in the SF and ZrF groups, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call