Implant-related osteomyelitis poses a significant challenge in orthopedic practice, particularly due to the increasing prevalence of antibiotic-resistant infections and biofilm-associated complications. This article focused on exploring the potential of combination therapy with adipose-derived stem cells (ADSCs) and antibiotics to overcome these challenges, thereby enhancing treatment efficacy. A systematic synthesis of the results of recent in vivo studies, predominantly those using rat models, was performed. Studies that evaluated the effectiveness of ADSCs combined with antibiotics against common pathogens in implant-related osteomyelitis, particularly Staphylococcus aureus and methicillin-resistant Staphylococcus epidermidis, were selected. A significant reduction in symptoms such as swelling, abscess formation, and bacterial burden in the ADSCs + antibiotic-treated group was observed in all studies. In addition, microcomputed tomography revealed reduced osteolysis, indicating enhanced bone preservation. Furthermore, histological examination revealed improved tissue structure and altered immune response, signifying the dual role of ADSCs in enhancing antibiotic action and modulating the immune system. This review highlights the promising role of the concurrent use of ADSCs and antibiotics in the treatment of implant-related osteomyelitis. This novel therapeutic strategy has the potential to revolutionize the management of complex orthopedic infections, especially those resistant to conventional treatments. However, further research is required to translate the results of animal studies into clinical applications and to develop optimized treatment protocols for human use.
Read full abstract