Abstract
A number of calcium phosphate materials have been investigated as drug release matrices for the prophylactic treatment of implant-related osteomyelitis. However, some studies have shown the influence of processing on the efficacy of the delivered drug. The objective of this study was to evaluate the influence of pH during processing on the efficacy of vancomycin hydrochloride (VH) against Staphylococcus aureus. VH was loaded into a brushite cement (CaHPO(4).2H(2)O; pH 2.4); a hydroxyapatite cement (Ca(10)(PO(4))(6)OH(2); pH 9.4); and an apatite xerogel (pH 7.4). The pH of the material during processing had a significant influence on the mechanism of release from the cement. VH released from the apatite cement (pH 9.4) was not released in accordance with the Higuchi model. In addition to affecting release, the basic pH was shown to diminish the antibacterial potency of the released VH. Despite exceeding the minimum inhibitory concentration, the eluent from the apatite cement was ineffective against a culture of S. aureus. The findings of this study reinforce the importance of evaluating not only the release of the drug from the material matrix but also the antibacterial potency of the released drug.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.