Quantum Random Number Generators (QRNGs) have been theoretically proven to be able to generate completely unpredictable random sequences, and have important applications in many fields. However, the practical implementation of QRNG is always susceptible to the unwanted classical noise or device imperfections, which inevitably diminishes the quality of the generated random bits. It is necessary to perform the post-processing to extract the true quantum randomness contained in raw data generated by the entropy source of QRNG. In this work, a novel post-processing method for QRNG based on Zero-phase Component Analysis (ZCA) whitening is proposed and experimentally verified through both time and spectral domain analysis, which can effectively reduce auto-correlations and flatten the spectrum of the raw data, and enhance the random number generation rate of QRNG. Furthermore, the randomness extraction is performed after ZCA whitening, after which the final random bits can pass the NIST test.
Read full abstract