In the era of widespread digital image sharing on social media platforms, deep-learning-based watermarking has shown great potential in copyright protection. To address the fundamental trade-off between the visual quality of the watermarked image and the robustness of watermark extraction, we explore the role of structural features and propose a novel edge-aware watermarking framework. Our primary innovation lies in the edge-aware secret hiding module (EASHM), which achieves adaptive watermark embedding by aligning watermarks with image structural features. To realize this, the EASHM leverages knowledge distillation from an edge detection teacher and employs a dual-task encoder that simultaneously performs edge detection and watermark embedding through maximal parameter sharing. The framework is further equipped with a social network noise simulator (SNNS) and a secret recovery module (SRM) to enhance robustness against common image noise attacks. Extensive experiments on three public datasets demonstrate that our framework achieves superior watermark imperceptibility, with PSNR and SSIM values exceeding 40.82 dB and 0.9867, respectively, while maintaining an over 99% decoding accuracy under various noise attacks, outperforming existing methods by significant margins.
Read full abstract