The coexistence of Alzheimer's disease (AD) and chronic pain (CP) in the elderly population has been extensively documented, and a growing body of evidence supports the potential interconnections between these two conditions. This comprehensive review explores the mechanisms by which CP may contribute to the development and progression of AD, with a particular focus on neuroinflammatory pathways and the role of microglia, as well as the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. The review proposes that prolonged pain processing in critical brain regions can dysregulate the activity of the NLRP3 inflammasome within microglia, leading to the overproduction of pro-inflammatory cytokines and excessive oxidative stress in these regions. This aberrant microglial response also results in localized neuroinflammation in brain areas crucial for cognitive function. Additionally, CP as a persistent physiological and psychological stressor may be associated with hypothalamic-pituitary-adrenal (HPA) axis dysfunction, systemic inflammation, disruption of the blood-brain barrier (BBB), and neuroinflammation. These pathophysiological changes can cause morphological and functional impairments in brain regions responsible for cognition, memory, and neurotransmitter production, potentially contributing to the development and progression of CP-associated AD. Resultant neuroinflammation can further promote amyloid-beta (Aβ) plaque deposition, a hallmark of AD pathology. Potential therapeutic interventions targeting these neuroinflammatory pathways, particularly through the regulation of microglial NLRP3 activation, hold promise for improving outcomes in individuals with comorbid CP and AD. However, further research is required to fully elucidate the complex interplay between these conditions and develop effective treatment strategies.
Read full abstract