IntroductionMajor Depressive Disorder (MDD) leads to dysfunction and impairment in neurological structures and cognitive functions. Despite extensive research, the pathophysiological mechanisms and effects of MDD on the brain remain unclear. This study aims to assess the impact of MDD on brain activity using EEG power spectral analysis and asymmetry metrics.MethodsEEG recordings were obtained from 48 patients with MDD and 78 healthy controls. The data were segmented into 2-second windows (1024 data points) and analyzed using the Welch method, an advanced variant of the Fast Fourier Transform (FFT). A Hanning time window with 50% overlap was applied to compute the modified periodogram. Absolute and relative power, along with asymmetry values in the theta, alpha, and beta frequency bands, were calculated.ResultsPatients with MDD exhibited significantly higher absolute and relative power in the theta and beta bands and decreased power in the alpha band compared to healthy controls. Asymmetry analysis revealed significant differences between symmetric channels in the theta band (F7-F8, C3-C4, T3-T4, T5-T6), alpha band (F7-F8, C3-C4, T3-T4, T5-T6, O1-O2), and beta band (C3-C4, T3-T4, T5-T6, P3-P4).DiscussionThe findings suggest that MDD affects brain mechanisms and cognitive functions, as evidenced by altered power values in the theta and alpha bands. Additionally, asymmetry values in theta, alpha, and beta bands may serve as potential biomarkers for MDD. This study highlights that beyond the commonly used alpha asymmetry, theta and beta asymmetry can also provide valuable insights into the neurophysiological effects of MDD, aligning with previous neuroimaging studies that indicate impairments in memory, attention, and neuroanatomical connectivity in MDD.
Read full abstract