ObjectiveAlthough studies have confirmed that working memory (WM) is impaired among adults with major depressive disorder (MDD), generalizing these neurocognitive impairments to adolescents with MDD would be tenuous. Therefore, separate studies for adolescents with MDD are needed. Relatively little is known about the neural processes associated with WM dysfunction in adolescents with MDD. Thus, we examined whether adolescents with MDD have abnormal brain activation patterns compared to healthy controls (HC) during WM tasks and whether it was possible to distinguish adolescents with MDD and HC based on mean oxy-hemoglobin (Oxy-Hb) changes. MethodA total of 87 adolescents with MDD and 63 HC were recruited. Functional near-infrared spectroscopy (fNIRS) was performed to monitor the concentrations of Oxy-Hb in the frontotemporal lobe while participants performed three WM tasks in order to examine WM impairments in adolescents with depression. ResultsThe mean changes in Oxy-Hb concentrations in the left prefrontal cortex and right prefrontal cortex were higher among HC than among patients during the encoding and maintenance phase under each WM-load task. Machine learning was used to distinguish adolescents with MDD and HC based on Oxy-Hb changes, with a moderate area under the curve of 0.84. ConclusionsThis study revealed WM defects in adolescents with MDD compared to HC based on mean Oxy-Hb changes, which can be valuable for distinguishing adolescents with MDD from HC.