Dietary bioactive materials having anti-inflammatory and antioxidant potentials are able to inhibit diabetes-associated periodontal complications. Although numerous studies indicate that administration of p-coumaric acid (p-CA) ameliorates diabetes and diabetes-related complications, the roles of p-CA on periodontal tissue destruction in diabetic mice and the possible mechanisms therein are not completely understood. In this study, we evaluated whether supplementation with p-CA protects mice against diabetes-associated spontaneous periodontal destruction and also explored the associated mechanism therein using in vivo and in vitro experimental systems. C57BL/6 male mice were divided into sham, streptozotocin (STZ), and STZ+CA groups (n=5/group). Sham group was intraperitoneally injected with sodium buffer, whereas other two groups were injected with the buffer containing 160mg/kg of STZ. STZ-induced diabetic mice received oral gavage with p-CA (50mg/kg) (STZ+CA group) or with buffer only (STZ group) daily for 6weeks. The effect of p-CA on diabetes-associated spontaneous periodontal destruction was evaluated using μCT analysis, hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining, and immunohistochemical staining methods. The efficacies of p-CA on cell proliferation, osteoblast differentiation, reactive oxygen species (ROS) accumulation, and antioxidant-related marker expression were examined using human periodontal ligament fibroblasts (hPLFs) cultured under high glucose condition. Streptozotocin group exhibited periodontal tissue destruction along with increased inflammation, oxidative stress, and osteoclast formation, as well as with decreased osteogenesis. However, oral administration with p-CA protected mice against STZ-induced periodontal destruction by inhibiting inflammation and osteoclastic activation. STZ+CA group also showed higher expression of antioxidant and osteogenic markers in periodontal tissue than did STZ group. Treatment with high glucose concentration (30mmol/L) impaired proliferation and osteoblast differentiation of hPLFs along with cellular ROS accumulation, whereas these impairments were almost completely disappeared by supplementation with p-CA. These findings demonstrate that supplementation with p-CA inhibits diabetes-associated spontaneous destruction of periodontal tissue by enhancing anti-inflammatory, anti-osteoclastogenic, and antioxidant defense systems in STZ-treated mice.