Effects of dietary protein or arginine deficiency on constitutive and lipopolysaccharide (LPS)-induced nitric oxide (NO) synthesis were determined in young rats by quantifying urinary nitrate excretion. In Experiment 1, 30-d-old rats (n = 16) were divided randomly into two groups (n = 8/group) and pair-fed on the basis of body weight semipurified isocaloric diets containing 20 or 5% casein. In Experiment 2, 30-d-old rats (n = 24) were divided randomly into three groups (n = 8) and pair-fed on the basis of body weight purified isonitrogenous and isocaloric diets (composed of amino acids) containing 0.0, 0.3 or 1.0% L-arginine. In both experiments, daily collection of urine was initiated 10 d after the start of pair-feeding. On d 17 after the pair-feeding was initiated, LPS (1 mg/kg body wt) was injected intraperitoneally into rats, and urine was collected daily for an additional 7 d. In Experiments 3 and 4, activities of constitutive and inducible NO synthases were measured in macrophages and various tissues from protein- or arginine-deficient rats (n = 6). Body weight was lower in rats fed the 5% casein diet or the 0.0 and 0.3% arginine diets than in those fed 20% casein or 1% arginine, respectively. Dietary protein or arginine deficiency decreased serum concentrations of arginine and urinary nitrate excretion before and after LPS treatment, indicating impaired constitutive and inducible NO synthesis. Protein malnutrition reduced constitutive and inducible NO synthase activities in brain, heart, jejunum, lung, skeletal muscle and spleen, and inducible NO synthase activity in macrophages. Because NO is a mediator of the immune response and is the endothelium-dependent relaxing factor, impaired NO synthesis may help explain immunodeficiency and cardiovascular dysfunction in protein- or arginine-deficient subjects.
Read full abstract