Neck injuries from parachute opening shock (POS) are a concern in skydiving and military operations. This study employs finite element modeling to simulate POS scenarios and assess cervical spine injury risks. Validated against various conditions, including whiplash, the model replicates head/neck kinematics and soft tissue responses. POS simulations capture body/head motions during parachute deployment, indicating minimal risk of severe neck injuries (Abbreviated Injury Score/AIS ≥ 2) and low risk of soft tissue tears. Vertebral stress analysis during a rougher jump highlights high stress at C5/C6 lamina, indicating fracture risk. Comparative analysis with rear impact scenarios reveals distinct strain patterns, with rear impacts showing higher ligament strain, consistent with higher soft tissue damage risk. Though POS simulations exhibit lower strain values, they emphasize similar neck deformation patterns. The model's capability to accurately simulate head and neck movements during parachute openings provides critical validation for its use in assessing injury risks. The study's findings underline the importance of considering specific loading conditions in injury assessments and contribute to refining safety standards for skydiving and military operations. By highlighting the differences in injury mechanisms between POS and rear impacts, this research offers valuable insights into tailored injury mitigation strategies. The results not only enhance our understanding of neck injury mechanisms but also inform the development of protective gear and safety protocols, ultimately aiding in injury prevention for skydivers and military personnel.