The catastrophic impact of wildfires on the economy and ecosystems of Mediterranean countries in recent years, along with insufficient policies that favor disproportionally high funding for fire suppression, demand a more comprehensive understanding of fire regimes. Satellite remote sensing products support the generation of relevant burned-area (BA) information, since they provide the means for the systematic monitoring of large areas worldwide at low cost. This research study assesses the accuracy of the two publicly available MODIS BA products, MCD64A1 C6 and FireCCI51, at a national scale in a Mediterranean country. The research period covered four fire seasons, and a comparison was conducted against a higher-resolution Sentinel-2 dataset. The specific objectives were to assess their performance in detecting fire events occurring primarily in forest and semi-natural lands and to investigate their spatial and temporal uncertainties. Monthly fire observations were processed and analyzed to derive a comprehensive set of accuracy metrics. We found that fire size has an impact on their detection accuracy, with higher detection occurring in fires larger than 100 ha. Detection of smaller (<100 ha) fires was favored by the 250 m FireCCI51 product, but not from MCD64A1 C6, which exhibited less than 50% detection probability in the same range. Their spatial estimates of burned area exhibited a fairly satisfactory agreement with the reference data, reaching an average of 78% in detection rate. MCD64A1 C6 exhibited a more consistent spatial performance overall and better temporal accuracy, whereas FireCCI51 did not substantially outperform the former despite its finer resolution. Additional research is required for a more rigorous assessment of the variability of these burned area products, yet this research provides further insight and has implications for their use in fire-related applications at the local to the national scale.
Read full abstract