Sustainable management practices are crucial for the longevity of a monoculture vineyard, especially in the context of a changing climate. Therefore, soil management practices in a vineyard (T: tillage, T+FYM: tillage + farmyard manure, G: grass strips, G+NPK1: grass strips + rational rates of NPK, and G+NPK2: grass strips + higher rates of NPK) were tested in a temperate climate of Slovakia (Central Europe) under specific soil conditions (Rendzic Leptosol). We investigated the influence of continuous cropping on soil chemical properties and microbial communities during the dry and warm year of 2022. The results showed that the soil pH was higher by 19%, 21%, 24% and 13% in T, T+FYM, G and G+NPK1, respectively, compared to G+NPK2. The lowest soil organic matter (SOM) content was found in T, and it increased in the following order: T < T+FYM < G+NPK2 < G+NPK1 < G. Similarly, the lowest abundance of soil culturable bacteriota was found in T and it increased in the following order: T < T+FYM = G+NPK2 < G+NPK1< G. Culturable bacteriota was identified using mass spectrometry (MALDI-TOF MS Biotyper). The most numerous species group was Bacillus, followed by Lactobacillus > Staphylococcus > Pseudomonas. The most frequently isolated species were Bacillus megaterium (16.55%), Bacillus cereus (5.80%), Bacillus thuringiensis (4.87%), and Bacillus simplex (4.37%). Positive relationships between SOM and soil culturable bacteriota were found in the G and G+NPK1 treatments. Temperature also affected soil culturable bacteriota in all soil management practices, most significantly in G+NPK1. Overall, the best scenario for the sustainable management of a productive vineyard is the use of grass strips.
Read full abstract