Abstract

Changes in soil microbial and biochemical properties in response to management practices reflect changes in the functional capacity of soil ecosystems. The objectives were to evaluate effects of long-term management practices on different soil organic C and N pools and activities of glycoside hydrolases, including α- and β-glucosidases, α- and β-galactosidases, cellulase, and invertase, in semiarid prairie soils. Soils were sampled from five long-term management systems including: undisturbed, abandoned from cultivation, moderately grazed, heavily grazed, and cultivated with winter wheat ( Triticum aestivum L.). Activities of C-transforming enzymes were sensitive in discriminating soil ecosystems under various land uses and can be used as indicators for detecting impact of soil management practices on the soil capacity to cycle C. Long-term cultivation (more than 30 yr) decreased total organic C and N, microbial biomass, and activities of C-transforming enzymes, and led to development of a microbial community with enhanced metabolic activity. Grazing, especially at moderate intensity, did not lessen soil capacity to support microbial life and cycle C. The intermediate status of the chemical, microbial, and biochemical properties in the abandoned from cultivation soils suggested that through secondary succession the soil ecosystem is restoring its capacity to sequester C and support microbial life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.