Waste management plants are one of the most important sources of odorants that may cause odor nuisance. The monitoring of processes involved in the waste treatment and disposal as well as the assessment of odor impact in the vicinity of this type of facilities require two different but complementary approaches: analytical and sensory. The purpose of this work is to present these two approaches. Among sensory techniques dynamic and field olfactometry are considered, whereas analytical methodologies are represented by gas chromatography–mass spectrometry (GC-MS), single gas sensors and electronic noses (EN). The latter are the core of this paper and are discussed in details. Since the design of multi-sensor arrays and the development of machine learning algorithms are the most challenging parts of the EN construction a special attention is given to the recent advancements in the sensitive layers development and current challenges in data processing. The review takes also into account relatively new EN systems based on mass spectrometry and flash gas chromatography technologies. Numerous examples of applications of the EN devices to the sensory and analytical measurements in the waste management plants are given in order to summarize efforts of scientists on development of these instruments for constant monitoring of chosen waste treatment processes (composting, anaerobic digestion, biofiltration) and assessment of odor nuisance associated with these facilities.