Previous research has primarily focused on soil erosion issues in arid and semi-arid regions, with a limited understanding of soil erosion mechanisms in tropical areas. Additionally, there is a lack of a holistic perspective to determine the spatial attribution of soil erosion. The conversion of tropical rainforests into economically driven plantations, like rubber and pulpwood, has resulted in distinct soil erosion characteristics in specific regions. To enhance our knowledge of soil erosion patterns and mechanisms in tropical regions, it is necessary to examine soil erosion in the three major watersheds of Hainan Island from 1991 to 2021, which encompass significant geographical features such as tropical island water sources and tropical rainforest national parks. The study employed the China Soil Loss Equation (CSLE) model, slope trend analysis, Pearson correlation analysis, land-use transfer matrix, and spatial attribution analysis to examine soil erosion under different scenarios. The research results indicate that scenarios driven by the combination of natural and human factors have the greatest impact on soil erosion changes in the entire study area. Co-driven increases affected 53.56% of the area, while co-driven decreases affected 21.74%. The 31-year soil erosion showed an overall increasing trend. Human factors were identified as the primary drivers of increased soil erosion in the Nandu River basin, while a combination of climate and anthropogenic factors influenced the decrease in soil erosion. In the Changhua River basin, climate and human activities contributed to the soil erosion increase, while human activities primarily caused the decrease in soil erosion. In the Wanquan River basin, climate intensified soil erosion, whereas human activities mitigated it. This study underscores the significant combined impact of human activities and natural factors on soil erosion in tropical regions. It emphasizes the importance of considering human-induced factors when implementing soil erosion control measures in tropical regions.