To compare the impact attenuating capabilities between ice hockey helmets manufactured with and without XRD impact protection foam, worn with and without a XRD skullcap, at reducing sub-concussive head accelerations. Quasi-experimental laboratory. Ice hockey helmets were fit onto a Hybrid III 50th Head Form Head and dropped 25 times onto the left temporal side for each condition: XRD foam helmet, XRD foam helmet with XRD skullcap adjunct, non-XRD foam helmet, and non-XRD foam helmet with XRD skullcap adjunct. The helmets were dropped from a height that resulted in sub-concussive linear accelerations (25-80 g's). Using a tri-axial accelerometer, peak linear accelerations (g) were measured, and the average was used to compare impact attenuation properties across the four conditions. The highest linear accelerations were observed in the XRD foam helmet without skullcap (32.97 ± 0.61 g) and were significantly greater (p < 0.001) than the XRD helmet with skullcap (21.38 ± 0.76 g). The helmet without XRD foam elicited the lowest peak linear accelerations (16.10 ± 0.73 g) which were significantly lower than the XRD foam helmet regardless of whether the skullcap was added (p < 0.001). Although sub-concussive loads are potentially just as dangerous, much of the research regarding helmet and skullcap efficacy appears to be at high concussive impacts; <70 g's. The findings suggest that helmets with incorporated XRD foam, either within the design or added as an adjunct, are less effective at attenuating linear accelerations at sub-concussive levels than the low-density foam helmet.
Read full abstract