ObjectiveIn this study, we investigated the adverse effects of dietary zearalenone (ZEA) (0.5 to 1.5 mg/kg diet) on the localization and expression of the growth hormone receptor (GHR) in the uteri of post-weaning gilts and explored alternative mechanism of the reproductive toxicity of ZEA on piglets.MethodsA total of forty healthy piglets (Duroc×Landrace×Large White) aged 28 d were selected for study. Piglets were transferred to single cages after 10 days’ adaptation on an obstetric table. The animals were allocated to one of four treatments: a normal basal diet supplemented with 0 (Control), 0.5 (ZEA0.5), 1.0 (ZEA1.0), or 1.5 (ZEA1.5) mg/kg purified ZEA, and fed for 35 d after the 10-d adaptation. Analyzed ZEA concentrations in the diets were 0, 0.52±0.07, 1.04±0.03, and 1.51±0.13 mg/kg, respectively. At the end of the feeding trial, piglets were euthanized after being fasted for 12 h. Two samples of uterine tissue from each pig were rapidly collected, one of which was stored at −80°C for analysis of the relative mRNA and protein expression of GHR, and the second was promptly fixed in Bouin’s solution for immunohistochemical analysis.ResultsThe relative weight of the uteri and thickness of the myometrium and endometrium increased linearly (p<0.001) and quadratically (p<0.001) with an increasing level of ZEA. The results of immunohistochemical analysis indicated that GHR immunoreactive substance was mainly localizated in the cytoplasm of uterine smooth muscle, glandular epithelial, luminal epithelial, stromal, and vascular endothelial cells. In contrast, nuclear staining was rarely observed. The immunoreactive integrated optic density of GHR in the myometrium, luminal epithelium, glandular epithelium, and whole uteri of weaning gilts increased linearly (p<0.001) and quadratically (p<0.05) with an increasing level of ZEA. The mRNA and protein expression of GHR in the uteri of weaning gilts increased linearly (p<0.001) and quadratically (p<0.05) with an increasing level of ZEA.ConclusionIn conclusion, ZEA at a concentration of 0.5 mg/kg was sufficient to significantly thicken the myometrium and endometrium, and at a concentration of 1.0 mg/kg induced a high level of GHR expression to promote growth and development of the uteri. This revealed an alternative molecular mechanism whereby ZEA induces growth and development of the uteri and provides a theoretical basis for the revision of Chinese feed hygiene standards.
Read full abstract