Computational prediction of the interaction of Tcell receptors (TCRs) and their ligands is a grand challenge in immunology. Despite advances in high-throughput assays, specificity-labeled TCR data remain sparse. In other domains, the pre-training of language models on unlabeled data has been successfully used to address data bottlenecks. However, it is unclear how to best pre-train protein language models for TCR specificity prediction. Here, we introduce a TCR language model called SCEPTR (simple contrastive embedding of the primary sequence of Tcell receptors), which is capable of data-efficient transfer learning. Through our model, we introduce a pre-training strategy combining autocontrastive learning and masked-language modeling, which enables SCEPTR to achieve its state-of-the-art performance. In contrast, existing protein language models and a variant of SCEPTR pre-trained without autocontrastive learning are outperformed by sequence alignment-based methods. We anticipate that contrastive learning will be a useful paradigm to decode the rules of TCR specificity. A record of this paper's transparent peer review process is included in the supplemental information.
Read full abstract