Aflatoxin B1 (AFB1) is highly toxic and difficult to prevent. It is mainly produced by fungi and exists in plants and animals and is classified by the World Health Organization as a class I carcinogen, posing a serious threat to human and animal health. Therefore, it is important to establish an efficient, sensitive, and on-site detection method for AFB1 to protect human health. The immunochromatographic test strip method is simple, sensitive, and can achieve real-time detection. However, traditional immunochromatographic test strips have low sensitivity due to their relatively weak optical properties. In this study, Nb-G8 was biotinylated using a chemical method. Two sizes of gold nanoflowers (AuNFs) were prepared and combined with biotinylated G8 and streptavidin to form two types of probes. These probes were sprayed on gold standard pads and expanded pads, respectively, to enhance the signals through the high affinity interaction between streptavidin and biotin. Under the optimal experimental conditions, the half maximal inhibitory concentration (IC50) of this method was 5.0 ng/mL and the limit of detection (IC10) was 0.03 ng/mL, which increased the sensitivity of the test strip by four-fold compared with that of the traditional biotinylated nanoantibody immunochromatography test strip and had a wider detection range. In conclusion, the use of a high-affinity amplification signal between biotin and streptavidin is a valuable method for the detection of aflatoxin.