Sex and gender differences play a crucial role in health and disease outcomes. This study used data from the National Health and Nutrition Examination Survey to explore how environmental exposures affect health-related traits differently in males and females. We utilized a sex-stratified phenomic environment-wide association study (PheEWAS), which allowed the identification of associations across a wide range of phenotypes and environmental exposures. We examined associations between 272 environmental exposures, including smoking-related exposures such as cotinine levels and smoking habits, and 58 clinically relevant blood phenotypes, such as serum albumin and homocysteine levels. Our analysis identified 119 sex-specific associations. For example, smoking-related exposures had a stronger impact on increasing homocysteine, hemoglobin, and hematocrit levels in females while reducing serum albumin and bilirubin levels and increasing c-reactive protein levels more significantly in males. These findings suggest mechanisms by which smoking exposure may pose higher cardiovascular risks and greater induced hypoxia for women, and greater inflammatory and immune responses in men. The results highlight the importance of considering sex differences in biomedical research. Understanding these differences can help develop more personalized and effective health interventions and improve clinical outcomes for both men and women.
Read full abstract