Non-coding RNAs (ncRNAs) have been implicated in a variety of biological processes. However, most ncRNAs are of unknown function and are as-yet unannotated. The immune-related functions of ncRNAs in the pearl oyster Pinctada fucata martensii were explored based on transcriptomic differences in the expression levels of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) in the hemocytes of P.f. martensii after challenge by the pathogenic bacterium Vibrio parahaemolyticus. Across the challenged and control pearl oysters, 144 miRNAs and 14,571 lncRNAs were identified. In total, 13,375 ncRNAs were differentially expressed between the challenged and control pearl oysters; in the challenged pearl oysters as compared to the controls, 15 miRNAs and 5147 lncRNAs were upregulated, while 51 miRNAs and 8162 lncRNAs were downregulated. The sequencing results were validated using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. GO and KEGG pathway analysis showed that genes targeted by the differentially expressed ncRNAs were associated with the vascular endothelial growth factor (VEGF) signaling pathway and the nuclear factor kappa-B (NF-κB) signaling pathway. An lncRNA-mRNA-miRNA network that was developed based on the transcriptomic results of this study suggested that lncRNAs may compete with miRNAs for mRNA binding sites. This study may provide a useful framework for the detection of additional novel ncRNAs, as well as new insights into the pathogenic mechanisms underlying the response of P.f. martensii to V. parahaemolyticus.