The growing resistance of weeds to herbicides demands innovative strategies that harness soil biology for effective weed control. We examined the use of carbon amendments to stimulate microbial immobilization of soil nitrogen for weed control. We hypothesized that increased carbon availability will stimulate soil microbial growth, leading to greater nitrogen immobilization, which consequently decreases plant-available nitrogen and suppresses the growth of nitrogen-responsive weed species. We buried 80 19-L pots in a research farm field and added sawdust and sucrose to soils as a high carbon treatment and used unamended soils as a control. We examined eight different weed species separately, and measured plant growth, soil carbon, available nitrate, microbial carbon and nitrogen, and microbial community composition after 11 weeks of treatment. The carbon amendments altered plant-microbial competition for nitrogen, resulting in reduced biomass for most weed species. The carbon-amended soils had higher microbial biomass carbon and nitrogen, slower nitrogen cycling, and less available soil nitrogen, indicating enhanced nitrogen immobilization. The carbon treatment altered the beta diversity of soil fungi and bacteria and reduced fungal alpha diversity estimated by the Shannon index. The study results indicate that high carbon substrates can be used to modify plant-microbial competition for soil nitrogen with important implications for developing sustainable weed management practices.
Read full abstract