Abstract

Abstract.Experiments were designed to test the applicability of nitrogen immobilization as a means of accelerating the recovery of an endemic open sandy grassland (Festucetum vaginatae danubiale) on old fields in the Great Hungarian Plain. Effects of various carbon sources (sucrose, starch, cellulose and sawdust) and their combinations in different quantities were studied in laboratory microcosms. Carbon addition decreased nitrogen availability in all cases, the intensity and timing of change being dependent on the type of carbon source applied. The combination of 2 g each of sucrose and polysaccharides (starch, cellulose, sawdust) per kg soil was found to be the most effective, as sucrose decreased available nitrogen content of soil intensively and the polysaccharides maintained the immobilized nitrogen for a longer period. In a follow‐up experiment, sucrose and sawdust were selected for field application to test their effectiveness in immobilizing N and accelerating restoration. The field experiment was established to test the importance of abiotic site differences in the immobilization of soil nitrogen. Selected sites were located along an elevation, moisture and productivity gradient. Soil organic matter, microbial biomass‐C and decomposition rate varied between sites depending on the elevation gradient. At two sites with lower soil moisture and organic matter levels carbon addition increased microbial activity and nitrogen immobilization significantly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.