Lipases have catalytic capacity in various processes such as hydrolysis. Those derived from plant sources, such as linseed, offer an economical alternative. The immobilization process facilitates the recovery and reuse of lipase, providing advantages such as resistance to high temperatures and difficulties in recovering and reusing free lipases, which makes product separation difficult. This study presents the immobilization of lipases extracted from flax seeds on octylfunctional hydrophobic supports. Additionally, the thermal stability of the derived products was evaluated in comparison with freely soluble lipase. The lipase exhibited a strong affinity for the evaluated heterofunctional hydrophobic supports, with DVS-activated octylagarose emerging as the most efficient method for immobilization, thus increasing catalytic activity upon resuspension. Furthermore, the octylagarose derivative demonstrated a notable increase in thermal stability. The main results of the study include that the soluble enzyme showed greater activity after 24 h, regardless of the temperature evaluated. The benzamide extract showed greater thermal stability, and all supports evaluated showed greater activity than the soluble enzyme after immobilization. Notably, lipase immobilized on octyl glyoxyl agarose showed the highest activity, demonstrated stability for 840 h at 60 °C, and had a half-life of 1242 h. Furthermore, the lipase immobilized in octyl glyoxyl agarose showed a stabilization factor approximately nine times greater than the free enzyme. These results suggest that immobilization, probably achieved through interfacial activation and multipoint covalent bonds, prevented the release of the enzyme into the medium with increasing temperature. This study thus highlights the significant potential of immobilizing flaxseed-derived lipase.
Read full abstract