This paper presents an analytical Buckley-Leverett-type solution for one-dimensibnal immiscible displacement of a Newtonian fluid by a non-Newtonian fluid in porous media. The non-Newtonian fluid viscosity is assumed to be a function of the flow potential gradient and the non-Newtonian phase saturation. To apply this method to field problems a practical procedure has been developed which is based on the analytical solution and is similar to the graphic technique of Welge. Our solution can be regarded as an extension of the Buckley-Leverett method to Non-Newtonian fluids. The analytical result reveals how the saturation profile and the displacement efficiency are controlled not only by the relative permeabilities, as in the Buckley-Leverett solution, but also by the inherent complexities of the non-Newtonian fluid. Two examples of the application of the solution are given. One application is the verification of a numerical model, which has been developed for simulation of flow of immiscible non-Newtonian and Newtonian fluids in porous media. Excellent agreement between the numerical and analytical results has been obtained using a power-law non-Newtonian fluid. Another application is to examine the effects of non-Newtonian behavior on immiscible displacement of a Newtonian fluid by a power-law non-Newtonian fluid.
Read full abstract