Flow control of a low-aspect-ratio flat-plate heaving wing at an average angle of attack of $10^{\circ }$ by a steady-blowing jet is numerically studied by using a feedback immersed boundary–lattice Boltzmann method. Blowing jets at the leading edge, mid-chord and trailing edge are considered. The wing enjoys the highest lift production with the trailing-edge downstream blowing jet, which improves the average lift by 50.0 % at $Re = 1000$ and 22.9 % at $Re = 5000$ through the enhancement of the tip vortex circulation caused by the increase in the mass flux of the shear layer at the wing tips. This increase in mass flux decreases as $Re$ increases from 1000 to 5000 due to its self-limiting mechanism. A mid-chord vertical blowing jet induces a middle vortex which enhances the lift production but the enhancement is smaller than that of trailing-edge downstream blowing jet. Other jet arrangements do not significantly increase the lift coefficient, but the mid-chord upstream blowing jet experiences a significant reduction in the drag coefficient, leading to an increase of 50.6 % in the average lift-to-drag ratio. The effectiveness of the flow control is not significantly affected by the aspect ratio.
Read full abstract