In view of global environmental change, ecological factors especially temperature, affect development of the poikilotherms like insects. Since ladybirds are at risk of injury under mass-rearing conditions, their ability to regenerate injured limbs is highly crucial for their survival. Therefore, the effect of limb regeneration in relation to temperature forms the basis of the present study. The immature stages of insects, being more vulnerable to the surrounding temperature, were considered to study the effect of the prior thermal experience of larvae on regeneration. We exposed the early larval stages of the ladybird beetle, Cheilomenes sexmaculata, to different temperature conditions pre- and postamputation. Exposure of immature stages to extreme temperatures did not affect the ability to regenerate and regeneration occurred at given temperature conditions. However, the regenerated legs were smaller in size across given temperatures as compared to unamputated legs. Body weights in amputated treatments showed no difference and remained unchanged across temperatures when compared to unamputated treatments. Postamputation developmental duration, equivalent to recovery time postlimb amputation, was found to be affected by larval thermal conditions. Recovery was faster in larval treatments exposed to higher temperatures. Thus, larval thermal conditions though did not affect the ability to regenerate lost limbs directly, it does modulate the time taken to regenerate.
Read full abstract