Abstract

The azalea lace bug, Stephanitis pyrioides (Scott) (Hemiptera: Tingidae), is an important insect pest of azaleas (Rhododendron L. spp.) in the USA. Stephanitis pyrioides feeds on azalea foliage and causes extensive chlorosis, which reduces the aesthetic value and marketability of these plants. Because the use of neonicotinoid insecticides has been dramatically reduced or discontinued, growers and landscape managers are seeking alternative tools or strategies to control this insect. Although insect growth regulators (IGRs) are known for their activity against immature insect stages, their activity against egg hatching has not been addressed thoroughly, specifically against S. pyrioides. Thus, a series of experiments was conducted to understand the ovicidal activity of IGRs using novaluron, azadirachtin, pyriproxyfen, and buprofezin against S. pyrioides. The number of newly emerged young instars was significantly lower when leaves implanted with eggs were sprayed on both sides with novaluron, azadirachtin, and buprofezin compared to nontreated and pyriproxyfen treatments. When IGRs plus adjuvant were applied to the adaxial surface of the leaves, the densities of the newly emerged nymphs were significantly lower under the novaluron treatment compared to the nontreated leaves. However, there was no significant difference in the number of nymphs that emerged in the absence of adjuvant. Furthermore, close monitoring revealed reduced levels of egg hatching in the presence of adjuvant with novaluron compared to its absence. The data show that the survival of S. pyrioides first instars was not affected by exposure to dried IGR residues.

Highlights

  • The azalea lace bug, Stephanitis pyrioides (Scott) (Hemiptera: Tingidae), is an important insect pest of azalea plants (Rhododendron L. spp; family Ericaceae) in the eastern USA [1]

  • The results show that the insect growth regulators (IGRs) novaluron, buprofezin, and azadirachtin reduced the number of S. pyrioides nymphs when applied to leaves containing implanted S. pyrioides eggs

  • The data show that novaluron, buprofezin, and azadirachtin reduced the development of young nymphs when S. pyrioides eggs implanted in leaves were exposed to IGRs

Read more

Summary

Introduction

The azalea lace bug, Stephanitis pyrioides (Scott) (Hemiptera: Tingidae), is an important insect pest of azalea plants (Rhododendron L. spp; family Ericaceae) in the eastern USA [1]. S. pyrioides has become established in Oregon and Washington, and it poses a serious threat to Rhododendron L. spp in production nurseries and landscapes [2,3]. In the ornamental nursery industry, S. pyrioides-infested plants cannot be marketed, and infestations of public and private landscapes or gardens reduces their aesthetic value [4,5]. S. pyrioides infestations in nurseries, as well as landscapes, have been managed using the effective neonicotinoid insecticide, imidacloprid [7]. Neonicotinoid insecticide use in private and public landscapes is perceived as a threat to pollinators and other beneficial arthropods

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.