Imidacloprid is a neonicotinoid systemic insecticide used worldwide. Despite its hazardous impact on non-target organisms, few studies have been conducted concerning the potential eco-genotoxic effects in invertebrates of surface waters where this pesticide is detected from units of ng/L to tens of μg/L. The aim of the present work was to determine the acute, the sub-chronic and the chronic toxicity of imidacloprid in producers and primary consumers of the freshwater trophic chain. The organisms under investigation were the green alga Raphidocelis subcapitata, the rotifer Brachionus calyciflorus, the cladoceran crustacean Ceriodaphnia dubia and the benthic ostracod Heterocypris incongruens. In addition, potential DNA damage and ROS production were evaluated in C. dubia.Furthermore, in accordance with European guidelines, toxicological risk assessment of imidacloprid was performed for all continents considering its global occurrence in surface waters. In addition, we assessed the genotoxicological risk and median inhibition of reproduction was observed at units of mg/L for rotifers and daphnids. Algae showed the lowest level of sensitivity to the pesticide with effective concentrations from units to hundreds of mg/L. DNA lesions were marked from 7 μg/L with a significant increase in damage as concentrations increased. Chronic toxicity risk quotient values were generally below to a threshold value of 1, with no consequential environmental concern other than for the Canadian areas. On the contrary, the genotoxicological risk quotient values were found higher than the threshold value in all continents.
Read full abstract