Based on high-resolution 2D seismic profiles, the Paleozoic structural deformation characteristics of Bachu (巴楚) uplift of northwestern Tarim basin, NW China, are exhibited in this article. The deformation happened during three main geological periods: the end of Middle-Late Ordovician (O2–3), the end of Early-Middle Devonian (D1–2), and the end of Late Permian (P2). In the Bachu uplift, there developed a series of NW-trending thrust faults and imbricate structures due to the effect of the NW-SE compression stress towards the end of Middle-Late Ordovician (O2–3) (middle Caledonian movement), and there developed some NNE-trending thrust faults and fault blocks under the control of the NEE-SWW compression stress at the end of Early-Middle Devonian (D1–2) (early Hercynian movement). However, at the end of Late Permian (P2) (late Hercynian movement), some NE-trending thrust faults and associated folds developed as a result of the NE-SW compression stress. The first-stage (O2–3) deformation is obviously more violent than those of the latter two stages (D1–2 and P2), which implies that the Tarim plate drifted quickly to the north at around the same time basin.