The rapid advancements in magnetic resonance imaging (MRI) technology have precipitated a new paradigm wherein cross-modality data translation across diverse imaging platforms, field strengths, and different sites is increasingly challenging. This issue is particularly accentuated when transitioning from 3 Tesla (3T) to 7 Tesla (7T) MRI systems. This study proposes a novel solution to these challenges using generative adversarial networks (GANs)-specifically, the CycleGAN architecture- to create synthetic 7T images from 3T data. Employing a dataset of 1112 and 490 unpaired 3T and 7T MR images, respectively, we trained a 2-dimensional (2D) CycleGAN model, evaluating its performance on a paired dataset of 22 participants scanned at 3T and 7T. Independent testing on 22 distinct participants affirmed the model's proficiency in accurately predicting various tissue types, encompassing cerebral spinal fluid, gray matter, and white matter. Our approach provides a reliable and efficient methodology for synthesizing 7T images, achieving a median Dice of 6.82%,7,63%, and 4.85% for Cerebral Spinal Fluid (CSF), Gray Matter (GM), and White Matter (WM), respectively, in the testing dataset, thereby significantly aiding in harmonizing heterogeneous datasets. Furthermore, it delineates the potential of GANs in amplifying the contrast-to-noise ratio (CNR) from 3T, potentially enhancing the diagnostic capability of the images. While acknowledging the risk of model overfitting, our research underscores a promising progression towards harnessing the benefits of 7T MR systems in research investigations while preserving compatibility with existent 3T MR data. This work was previously presented at the ISMRM 2021 conference (Diniz, Helmet, Santini, Aizenstein, & Ibrahim, 2021).
Read full abstract