For a Gaussian prime π and a nonzero Gaussian integer β = a + b i ∈ ℤ i with a ≥ 1 and β ≥ 2 + 2 , it was proved that if π = α n β n + α n − 1 β n − 1 + ⋯ + α 1 β + α 0 ≕ f β where n ≥ 1 , α n ∈ ℤ i \ 0 , α 0 , … , α n − 1 belong to a complete residue system modulo β , and the digits α n − 1 and α n satisfy certain restrictions, then the polynomial f x is irreducible in ℤ i x . For any quadratic field K ≔ ℚ m , it is well known that there are explicit representations for a complete residue system in K , but those of the case m ≡ 1 mod 4 are inapplicable to this work. In this article, we establish a new complete residue system for such a case and then generalize the result mentioned above for the ring of integers of any imaginary quadratic field.
Read full abstract