<em><span lang="EN-US">The fruit of the calabura tree (Muntingia calabura) is a small red fruit originating from the Prunus genus, often found along roadsides. This fruit contains numerous nutrients beneficial for bodily health, serving as a highly potential source of nutrition. Presently, a challenge exists in determining the sweetness level of calabura fruit, relying heavily on manual human assessment. The development of classification utilizing technology is considered a crucial step. Previous research has concentrated on classifying various objects using RGB, HSV, YCbCr color feature extraction. However, it was observed that RGB, HSV, YCbCr color features are not universally suitable, particularly for calabura fruits. Hence, this study employs a method of classifying the sweetness level of calabura fruit based on NTSC color features using a Digital Image Processing-based Artificial Neural Network (ANN). This approach leverages color-based image processing features. The research involves several stages, starting from acquiring 300 calabura fruit images with 3 levels of classification to the classification process utilizing Backpropagation in the ANN. Multiple training and testing scenarios were conducted to select feature combinations with the highest accuracy and fastest computational time. Results revealed that the most effective feature used was the NTSC color feature as a skin characteristic parameter. Based on training outcomes using 210 training images, the accuracy reached 100% with a computational time of 1.66 seconds per image. Meanwhile, testing with 90 sample images showed an accuracy of 94% with a computational time of 4.23 seconds per image. Thus, it can be concluded that the employed method successfully classifies the quality of calabura fruit images based on color features and skin characteristics.</span></em>