X-ray photon-counting detectors (PCDs) have recently gained popularity due to their capabilities in energy discrimination power, noise suppression, and resolution refinement. The latest extremity photon-counting computed tomography (PCCT) scanner leverages these advantages for tissue characterization, material decomposition, beam hardening correction, and metal artifact reduction. However, technical challenges such as charge splitting and pulse pileup can distort the energy spectrum and compromise image quality. Also, there is a clinical need to balance radiation dose and imaging speed for contrast-enhancement and other studies. This paper aims to address these challenges by developing a dual-domain correction approach to enhance PCCT reconstruction quality quantitatively and qualitatively. We propose a novel correction method that operates in both projection and image domains. In the projection domain, we employ a residual-based Wasserstein generative adversarial network (R-WGAN) to capture local and global features, suppressing pulse pileup, charge splitting, and data noise. This is facilitated with traditional filtering methods in the image domain to enhance signal-to-noise ratio while preserving texture across each energy channel. To address GPU memory constraints, our approach utilizes a patch-based volumetric refinement network. Our dual-domain correction approach demonstrates significant fidelity improvements across both projection and image domains. Experiments on simulated and real datasets reveal that the proposed model effectively suppresses noise and preserves intricate details, outperforming the state-of-the-art methods. This approach highlights the potential of dual-domain PCCT data correction to enhance image quality for clinical applications, showing promise for advancing PCCT image fidelity and applicability in preclinical/clinical environments.
Read full abstract