Background: The morphological type of the acromion may play a role in the etiopathogenesis of various pathologies, such as shoulder impingement syndrome and rotator cuff disorders. Therefore, it is important to determine the acromion’s morphological types accurately and quickly. In this study, it was aimed to detect the acromion shape, which is one of the etiological causes of chronic shoulder disorders that may cause a decrease in work capacity and quality of life, on shoulder MR images by developing a new model for image retrieval in Content-Based Image Retrieval (CBIR) systems. Methods: Image retrieval was performed in CBIR systems using Convolutional Neural Network (CNN) architectures and textural-based methods as the basis. Feature maps of the images were extracted to measure image similarities in the developed CBIR system. For feature map extraction, feature extraction was performed with Histogram of Gradient (HOG), Local Binary Pattern (LBP), Darknet53, and Densenet201 architectures, and the Minimum Redundancy Maximum Relevance (mRMR) feature selection method was used for feature selection. The feature maps obtained after the dimensionality reduction process were combined. The Euclidean distance and Peak Signal-to-Noise Ratio (PSNR) were used as similarity measurement methods. Image retrieval was performed using features obtained from CNN architectures and textural-based models to compare the performance of the proposed method. Results: The highest Average Precision (AP) value was reached in the PSNR similarity measurement method with 0.76 in the proposed model. Conclusions: The proposed model is promising for accurately and rapidly determining morphological types of the acromion, thus aiding in the diagnosis and understanding of chronic shoulder disorders.
Read full abstract