Malaria remains a global health concern, with 249 million cases and 608,000 deaths being reported by the WHO in 2022. Traditional diagnostic methods often struggle with inconsistent stain quality, lighting variations, and limited resources in endemic regions, making manual detection time-intensive and error-prone. This study introduces an automated system for analyzing Romanowsky-stained thick blood smears, focusing on image quality evaluation, leukocyte detection, and malaria parasite classification. Using a dataset of 1000 clinically diagnosed images, we applied feature extraction techniques, including histogram bins and texture analysis with the gray level co-occurrence matrix (GLCM), alongside support vector machines (SVMs), for image quality assessment. Leukocyte detection employed optimal thresholding segmentation utility (OTSU) thresholding, binary masking, and erosion, followed by the connected components algorithm. Parasite detection used high-intensity region selection and adaptive bounding boxes, followed by a custom convolutional neural network (CNN) for candidate identification. A second CNN classified parasites into trophozoites, schizonts, and gametocytes. The system achieved an F1-score of 95% for image quality evaluation, 88.92% for leukocyte detection, and 82.10% for parasite detection. The F1-score-a metric balancing precision (correctly identified positives) and recall (correctly detected instances out of actual positives)-is especially valuable for assessing models on imbalanced datasets. In parasite stage classification, CNN achieved F1-scores of 85% for trophozoites, 88% for schizonts, and 83% for gametocytes. This study introduces a robust and scalable automated system that addresses critical challenges in malaria diagnosis by integrating advanced image quality assessment and deep learning techniques for parasite detection and classification. This system's adaptability to low-resource settings underscores its potential to improve malaria diagnostics globally.
Read full abstract