Objective.Photon-counting x-ray detectors (PCDs) can produce dual-energy (DE) x-ray images of lung cancer in a single x-ray exposure. It is important to understand the factors that affect contrast, noise and the contrast-to-noise ratio (CNR). This study quantifies the dependence of CNR on tube voltage, energy threshold and patient thickness in single exposure, DE, bone-suppressed thoracic imaging with PCDs, and elucidates how the fundamental processes inherent in x-ray detection by PCDs contribute to CNR degradation.Approach.We modeled the DE CNR for five theoretical PCDs, ranging from an ideal PCD that detects every primary photon in the correct energy bin while rejecting all scattered radiation to a non-ideal PCD that suffers from charge-sharing and electronic noise, and detects scatter. CNR was computed as a function of tube voltage and high energy threshold for average and larger-than-average patients. Model predictions were compared with experimental data extracted from images acquired using a cadmium telluride (CdTe) PCD with two energy bins and analog charge summing for charge-sharing suppression. The imaging phantom simulated attenuation, scatter and contrast in lung nodule imaging. We quantified CNR improvements achievable with anti-correlated noise reduction (ACNR) and measured the range of exposure rates over which pulse pile-up is negligible.Main Results.The realistic model predicted overall trends observed in the experimental data. CNR improvements with ACNR were approximately five-fold, and modeled CNR-enhancements were on average within 10% of experiment. CNR increased modestly (i.e.<20%) when increasing the tube voltage from 90 kV to 130 kV. Optimal energy thresholds ranged from 50 keV to 70 keV across all tube voltages and patient thicknesses with and without ACNR. Quantum efficiency, electronic noise, charge sharing and scatter degraded CNR by ~50%. Charge sharing and scatter had the largest effect on CNR, degrading it by ~30% and ~15% respectively. Dead-time losses were less than 5% for patient exposure rates within the range of clinical exposure rates.Significance.In this study, we (1) employed analytical and computational models to assess the impact of different factors on CNR in single-exposure DE imaging with PCDs, (2) evaluated the accuracy of these models in predicting experimental trends, (3) quantified improvements in CNR achievable through ACNR and (4) determined the range of patient exposure rates at which pulse pile-up can be considered negligible. To the best of our knowledge, this study represents the first systematic investigation of single-exposure DE imaging of lung nodules with PCDs.
Read full abstract