Acute Lymphocytic Leukemia is a dangerous kind of malignant cancer caused due to the overproduction of white blood cells. The white blood cells in our body are responsible for fighting against infections, if the WBC increases the immunity will decrease and it would lead to serious health conditions. Malignant cancers such as ALL is life threatening if the disease is not diagnosed at an early stage. If a person is suffering from ALL the disease needs to be diagnosed at an early stage before it starts spreading, if it starts spreading the person’s chances of survival would also reduce. Here comes the need of an accurate automated system which would assist the oncologists to diagnose the disease as early as possible. In this paper some of the algorithms that are enhanced to detect and classify ALL are incorporated. In order to classify the Acute Lymphocytic Leukemia a hybrid model has been deployed to improve the accuracy of the diagnosis and it is termed as Hybrid CNN Enhanced Ensemble SVM for the classification of malignancy. Machine Learning classifiers are also used to design the system and it is then compared with enhanced CNN based on the performance metrics.
Read full abstract