안개 영상은 영상의 대비가 밝은 영역에 치우쳐 있기 때문에 영상의 정보를 전달하기 어렵다. 이러한 이유로 안개 제거 알고리즘이 연구되고 있다. 일반적으로 안개가 포함되기 전 상태의 영상을 획득하는 것이 어렵기 때문에 알고리즘의 성능을 평가하기 위해 결과 영상을 정성적으로 분석하였다. 본 논문에서는 영상의 변위 정보를 이용하여 안개 영상을 생성함으로써 정량적으로 오차를 비교하는 방법을 제안한다. 또한 이때 은닉 랜덤 마코프 모델(HRMF)에 기반한 기대값 최대화(EM) 알고리즘을 이용하여 블록 결함을 제거하였다. 다양한 합성영상 및 자연영상에 대하여 결과를 비교함으로써 제안한 알고리즘의 성능을 확인하였다. In the case of a haze image, transferring the information of the original image is difficult as the contrast leans toward bright regions. Thus, dehazing algorithms have become an important area of study. Normally, since it is hard to obtain a haze-free image, the output image is qualitatively analyzed to test the performance of an algorithm. However, this paper proposes a quantitative error comparison based on reproducing the haze image using a disparity map. In addition, a Hidden Random Markov Model and EM algorithm are used to remove any block artifacts. The performance of the proposed algorithm is confirmed using a variety of synthetic and natural images.
Read full abstract