Objective.Lung tumors can be obscured in x-rays, preventing accurate and robust localization. To improve lung conspicuity for image-guided procedures, we isolate the lungs in the anterior-posterior (AP) x-rays using a lung extraction network (LeX-net) that virtually removes overlapping thoracic structures, including ribs, diaphragm, liver, heart, and trachea.Approach.73 965 thoracic 3DCTs and 106 thoracic 4DCTs were included. The 3D lung volume was extracted using an open-source lung volume segmentation model. AP digitally reconstructed radiographs (DRRs) of the full anatomy CT and extracted lungs were computed as the input and reference to train a network (LeX-net) to generate lung-extracted DRRs (LeX-net DRRs) from full anatomy DRRs, which adopted a Swin-UNet model with conditional GAN. Subsequently, the trained LeX-net on 3DCT was applied to 4DCT-derived DRRs. Lung tumor tracking was then performed on DRRs using a template-matching method on a holdoff 4DCT test set of 79 patients whose gross tumor volumes were smaller than 20 cm3.Main results. LeX-net successfully isolated the lungs in DRRs, achieving an SSIM of 0.9581 ± 0.0151 and a PSNR of 30.78 ± 2.50 on the testing set of 3DCT-derived DRRs. Its performance declined slightly when applied to the 4DCT but maintained useable lung-only 2D views. On the challenging test set including cases of organ overlap, high tumor mobility, and small tumor size, the individual tumor tracking error for LeX-net DRRs was 0.97 ± 0.86 mm, significantly lower than that of 3.13 ± 5.82 mm using the full anatomy DRRs. LeX-net improved success rates of using 5 mm, 3 mm, and 1 mm tracking windows from 88.1%, 80.0%, and 58.7% to 98.1%, 94.2%, and 73.8%, respectively.Significance. LeX-net removes overlapping anatomies and enhances visualization of the lungs in x-rays. The model trained using 3DCTs is generalizable to 4DCT-derived DRRs, achieving significantly improved tumor tracking outcome.
Read full abstract