Compressive sensing (CS) has given us a new idea at data acquisition and signal processing. It has proposed some novel solutions in many practical applications. Focusing on the pixel-level multi-source image-fusion problem in wireless sensor networks, the paper proposes an algorithm of CS image fusion based on multi-resolution analysis. We present the method to decompose the images by nonsubsampled contourlet transform (NSCT) basis function and wavelet basis function successively and fuse the images in compressive domain. It means that the images can be sparsely represented by more than one basis function. We named this process as blended basis functions representation. Since the NSCT and wavelet basis functions have complementary advantages in multi-resolution image analysis, and the signals are sparser after being decomposed by two kinds of basis functions, the proposed algorithm has perceived advantages in comparison with CS image fusion in wavelet domain which is widely reported by literatures. The simulations show that our method provides promising results.
Read full abstract