The security of multimedia documents becomes an urgent need, especially with the increasing image falsifications provided by the easy access and use of image manipulation tools. Hence, usage of image authentication techniques fulfills this need. In this paper, we propose an effective self-embedding fragile watermarking scheme for color images tamper detection and restoration. To decrease the capacity of insertion, a Bayer pattern is used to reduce the color host image into a gray-level watermark, to further improve the security Torus Automorphism permutation is used to scramble the gray-level watermark. In our algorithm, three copies of the watermark are inserted over three components (R, G, and B channels) of the color host image, providing a high probability of detection accuracy and recovery if one copy is destroyed. In the tamper detection process, a majority voting technique is used to determine the legitimacy of the image and recover the tampered regions after interpolating the extracted gray-level watermark. Using our proposed method, tampering rate can achieve 25% with a high visual quality of recovered image and PSNR values greater than 34 (dB). Experimental results demonstrate that the proposed method affords three major properties: the high quality of watermarked image, the sensitive tamper detection and high localization accuracy besides the high-quality of recovered image.