Susceptibility to geometrical visual illusions has been tested in a number of non-human animal species, providing important information about how these species perceive their environment. Considering their active role in human lives, visual illusion susceptibility was tested in domestic dogs (Canis familiaris). Using a two-choice simultaneous discrimination paradigm, eight dogs were trained to indicate which of two presented circles appeared largest. These circles were then embedded in three different illusory displays; a classical display of the Ebbinghaus-Titchener illusion; an illusory contour version of the Ebbinghaus-Titchener illusion; and the classical display of the Delboeuf illusion. Significant results were observed in both the classical and illusory contour versions of the Ebbinghaus-Titchener illusion, but not the Delboeuf illusion. However, this susceptibility was reversed from what is typically seen in humans and most mammals. Dogs consistently indicated that the target circle typically appearing larger in humans appeared smaller to them, and that the target circle typically appearing smaller in humans, appeared larger to them. We speculate that these results are best explained by assimilation theory rather than other visual cognitive theories explaining susceptibility to this illusion in humans. In this context, we argue that our findings appear to reflect higher-order conceptual processing in dogs that cannot be explained by accounts restricted to low-level mechanisms of early visual processing.
Read full abstract