Lung cancer is a complex disease influenced by a variety of genetic and environmental factors. The cytokine interleukin 1 encoded by IL1B is an important mediator of the inflammatory response, and is involved in a variety of cellular activities. The effect of single nucleotide polymorphisms (SNP) at IL1B has been investigated in relation to cancer with inconsistent results. This Northeastern-Chinese case–control study involving 627 cases and 633 controls evaluated the role of three haplotype-tagging single nucleotide polymorphisms (htSNP) (rs1143633, rs3136558 and rs1143630) representing 95% of the common haplotype diversity across the IL1B gene and assessed interactions with IL1B, PPP1R13L, POLR1G and smoking duration in relation to lung cancer risk. The analyses of five genetic models showed associations with lung cancer risk for rs1143633 in the dominant model [adjusted-OR (95% CI) = 0.67 (0.52–0.85), P = 0.0012] and rs3136558 in the recessive model [adjusted-OR (95% CI) = 1.44 (1.05–1.98), P = 0.025]. Haplotype4 was associated with increased lung cancer risk [adjusted-OR (95% CI) = 1.55 (1.07–2.24), P = 0.021]. The variant G-allele of rs1143633 was protective in smoking sub-group of > 20 years. Using multifactor dimensionality reduction (MDR) analyses, we identified the three best candidate models of interactions and smoking-duration or IL1B rs1143633 as main effect. In conclusion, our findings suggest that IL1B SNP rs1143633 may associate with lower risk of lung cancer, confirming previously identified marker; IL1B SNP rs3136558 and haplotype4 consisting of IL1B htSNPs may associate with increasing risk of lung cancer; interactions of IL1B with POLR1G or PPP1R13L or smoking-duration, which is independent or combined, may involve in risk of lung cancer and lung squamous cell carcinoma.