The deubiquitinating enzyme Ubiquitin-specific peptidase 15 (USP15) is upregulated in various cancers and promotes tumor progression by increasing the expression of several oncogenes. This project is designed to explore the role and mechanism of USP15 in thyroid cancer (TC) progression. Selenium-binding protein 1 (SELENBP1), USP15, CCL2/5, CXCL10/11, IL-4, and TGF-β1 mRNA levels were detected using real-time quantitative polymerase chain reaction (RT-qPCR). SELENBP1, USP15, GPX4, IL-10, Arg-1, Granzyme B, TNF-α, and PR domain zinc finger protein 1 (PRDM1) protein levels were examined by western blot assay. Fe+ level, malondialdehyde (MDA), and lipid-ROS levels were determined using special kits. The proportion of CD11b+CD206+ positive cells was detected using a flow cytometry assay. The role of SELENBP1 on TC cell growth was examined using a xenograft tumor model in vivo. After GeneMANIA prediction, the interaction between USP15 and SELENBP1 was verified using Co-immunoprecipitation (CoIP) assay. The binding between PRDM1 and USP15 promoter was predicted by JASPAR and validated using Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. SELENBP1 was increased in TC subjects and cell lines, and its knockdown repressed TC cell proliferation, migration, invasion, immune escape, and induced ferroptosis in vitro, as well as blocked tumor growth in vivo. In mechanism, USP15 interacted with SELENBP1 and maintained its stabilization by removing ubiquitin. Meanwhile, the upregulation of USP15 was induced by the transcription factor PRDM1. USP15 transcriptionally mediated by PRDM1 might boost TC cell malignant behaviors through deubiquitinating SELENBP1, providing a promising therapeutic target for TC treatment.